
,. . .

Bi-directional Analysis for Certification of
Safety-Critical Software

Robyn R.. Lutz* and Robert M. Woodhouse
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, CA 91109

July 13, 1998

Abstract

For safety-critical systems, it is insufficient to certify the developer and the devel-
opment process. Certification of the software product itself is also needed. SFMEA
(Software Failure Modes and Effects Analysis) and SFTA (Software Fault Tree Anal-
ysis) are two engineering techniques that have been used successfully for a number of
years and in a variety of safety-critical applications to verify software design compli-
ance with robustness and fault-tolerance standards. This paper proposes the use of
Bi-directional Analysis (BDA), an integrated extension of SFMEA and SFTA, as a core
assessment technique by which safety-critical software can be certified. BDA can pro-
vide limited but .essential assurances that the software design has been systematically
examined and complies with requirements for software safety.

1 . Introduction
Even as requirements for software certification proliferate, the best approach to software
certification remains in dispute [43]. One suggested piece of the solution is to certify the
software developer or analyst. Another approach to software certification is to certify the de-
velopment process (e.g., to assure compliance with I S 0 9000-3, CMM or SPICE standards).
For safety-critical software, a third approach, certifying the software product itself, is an
essential aspect of software certification.

All three of these certification approaches (certifying the developer, the process, and
the product) share a drive towards standardization (of credentials, of development pro-
cesses, of software verification methods). All three approaches involve the-necessary inter-
nationalimtion of certification as software production increasingly ignores national bound-
aries. All tJhree approaches also involve independent evaluation of compliance of the devel-
oper/process/product against some pre-existing standard or guideline. However, since the

"First autllor's a.ddress is Dept. of Comput.er Science, Iowa State Universit.y, An~es, 1A 5001 1.

1

Certification

Requirements for I I Software
Hazard-Free Behavior 4 I t Design

I

BDA Checks Compliance
I

I

Requirements for I I Software
Hazard-Free Behavior 4 I * Code

I

Testing Ch{cks Compliance
t

Figure 1: Role of Bi-directional Analysis (BDA) in Certification of Safety-Critical Software

2 Overview of BDA
BDA first checks the design to determine whether the effects of abnormal (e.g., out-of-range)

. input values and unexpected software events (e.g., unexpected termination) can contribute
’ to unsafe system behavior. Following Leveson [lS], software safety is defined to be freedom

from undesired and unplanned events that results in a specified level of loss. Software safety
analysis techniques determine how software can contribute to conditions that result in loss
or failure. The forward direction of the BDA involves a forward analysis from abnormal
inputs or events to non-compliant consequences, and has its roots in Failure Modes and
Effects Analysis. The BDA then checks whether the non-compliant scenarios that have
been identified are credible. This analysis either determines that the failure modes cannot
occur given the design of this system or, if they can occur, that they are handled safely.
This direction of the BDA involves a backward analysis from those abnormal scenarios with
safety consequences to the collection of causes that might permit the identified scenario to
happen. The second part of the BDA has its roots in Fault Tree Analysis.

For software there is no “seal of approval” that guarantees that software will behave
safely. Instead, meaningful certification of safety-critical software is currently limited to a
structured assessment, using well-documented techniques, that the software complies with
certain specifications on its behavior [la]. For example, the ESPRIT2 project SCOPE (Soft-
ware Certification Programme in Europe) pursued product certification by evaluating and
assessing software compliance against requirements in a documented standard [40].

Fig. 1 shows the role of BDA (design certification) and testing (code certification) for
safety-critical software. Code testing is the most important means of s o f t a r e certification.
However, since testing is always partial and incomplete, assessment of design compliance
with required behavior is also needed. In addition, design compliance can be assessed prior
to testing, allowing needed changes to be made earlier in development.

Figure 2 shows an overview of the two components of a Bi-directional Analysis, the

Design

BDA

Forward
Analysis

I
Non-compliant

scenarios

Backward
Analysis

CredibilityKauses
of non-compliance

I

. Credible, non-compliant scenarios/
Mitigation strategies

Figure 2: Bi-directional Analysis (BDA) Procedure

Failure Mode

timeliness exceeded Off outdated
Test input 3, Temp limit Pump turned Sensor da.t,a Wrong timing
Rtcomm Crit Sys Effect Local Effect Failure Drscriy

Table 1: Excerpt from BDA Forward Analysis

1, the Failure h!Iode type is “Wrong timing of data” the Failure Description column is,
“Sensor input data received is incorrect,,’ the Local Effect column is, “Refrigerant pump is
erroneously commanded off,” and the System Effect column describes the consequence for
the system (“Temperature limit is exceeded”).

The next column indicates the “Criticality” of the failure mode’s effects. In the example,
this column is “3” (of 5) indicating a ,threat to the subsystem but not the system. (A
standard 5-part criticality measure reflects the severity of the failure’s effects, ranging from
“no effect” to “catastrophic effect.’,) The criticality column has safety implications in that
high criticality ratings can be used to indicate the existence of hazards. On the other hand,
non-critical effects, -even if indicative of design errors, may not have safety implications.
Depending on the standard against which compliance is being certified, it may be the case
that only items with criticality ratings above some threshold will require further analysis.

The final column in the forward analysis table, “Recommendations” proposes corrective
, actions to eliminate the non-compliant scenario that has been identified. Often it makes

sense to defer filling in this column until the second part of the BDA (the backward analysis
to identify contributing causes of the failure mode) has been performed. In all but the
simplest failure modes, it is often difficult to propose a meaningful corrective action until a
better understanding of the circumstances surrounding the failure mode exist.

The second kind of table used for the forward analysis is an Events Table. An Events
Table documents the effect of incorrect behavior or an incorrect event on the component and

’ the system. The Events Table assists in the search for process failures, including the effects
of software that fails to function correctly.

For each event (step in processing), each of the following four failure modes is analysed:

0 Halt/Abnormal Termination (e.g., hung or deadlocked at this point)

0 Omitted Event (e.g., event does not take place, but execution continues)

0 Incorrect Logic (e.g., preconditions are inaccurate; event does not implement intent)

0 Timing/Order (e.g., event occurs in wrong order; event occurs too early/late)

The Events Table documents the consequences of these failure modes for the events in the
component under review and classifies the criticality of the effects. For exacple, the Failure
Mode in one entry was “Timing/Order”, the Failure Description was “Instrume~~t turned on
too soon”, t,he Local Effect was “Insufficient power,” the System Effect was “ITndervoltage
occurs,” and t,he Criticality was rated “2” (since in this system, there was software to handle
recovery from an undervoltage).

under review [as]. Automat,ed tools to assist with portions of these analyses are currently
being t,ested on requirement,s a.nd design models. [25].

BD.4 is product-oriented rather than process-oriented in that it can "exercise and stress''
the design of the software product [46]. It first checks the effect on the system of corrupted
input or abnormal event execution without consideration of the source of error. Once a sce-
nario is identified that leads to non-compliant output or behavior, BDA then traces backward
in time to document the contributing causes for possible re-design or test.

4 Evaluation
Bi-directional analysis (BDA) has several advantages that recommend its use as a design
certification technique to developers of safety-critical software.

0 Availability The techniques BDA is based on are well-documented [lo, 15, 18, 34, 44,
391, hence relatively easy to teach and apply. These features make the technique readily

, available.

0 Structure The structured step-by-step procedure,of BDA guides implementation, and
the techniques involved are familiar to engineers worldwide.

0 Maintainability The information developed during application of BDA analysis is broadly
accessible since the format is readable, table-based, and web-accessible.

0 Safety Assessment The role of BDA in the design certification process links clearly with
requiremeqts, since it assesses the adequacy of the software design in terms of satisfying
the system safety requirements. BDA also provides forward links in the development
process, since it prioritizes action items (i.e., recommendations for mitigating actions),
prioritizes the hazards it uncovers (via the criticality measure), and provides a critical
piece of the hazard analysis for the software design. BDA can also identify test cases
in order to exercise each failure mode and confirm that the system reacts safely [29].

0 Incremental/evolutionury development BDA analysis products fit into an incremental
development process by being updatable for documentation. Initial work also suggests
that for product line systems, a BDA of the product family can be largely reused in
later instances of that family [17].

0 Independent Certification BDA can be used for design level certification against docu-
mented requirements specifications and has been widely used as a means for indepen-
dent verification.

0 Systems focus BDA is consistent with hardware certification practices (e.g., FMEA and
FTA), thus encouraging a systems approach to safety. -

0 Tools BDA may also be amenable to automation. Automated tools exist for software
forward and backward analyses [I , 7, S, 26, 311, but their capabilities are limited.
More p o ~ ~ ; r f u I t,ools. incorporating forwa.rc1 and backward analyses, are currently being
developcd, c . g . , by Safeware Enginec~ing Corporation [3 3] .

Acknowledgments
The work described in t,his pa.per was carried out at the Jet Propulsion Labora.tory, Cali-
fornia Institute of Technology, under a. contmct with the Na.tiona1 Aeronautics and Space
Administration.

Reference herein to any specific commercial product, process, or service by tradename,
trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by
the United States Government or the Jet Propulsion Laboratory, California Institute of
Technology.

References
Bell, D., L. Cox, S. Jackson and P. Schaefer (1992)) “Using Causal Reasoning for Automated
Failure Modes & Effects Analysis (FMEA)”, IEEE Proceedings of the Annual Reliability and
Maintainability Symposium, pp. 343-353.

Cha, S. S., N. G. Leveson, and T. J. Shimeall (1988), “Safety Verification in Murphy Using
Fault Tree Analysis,” in Proc of the 10th International Conference on Software Engineering,
Apr, 1988, Singapore, pp. 377-386.

Chillarege, R., et al. (1992)) “Orthogonal Defect Classification-A Concept for In-Process
Measurements,” IEEE Transactions on Software Engineering, 18, 11, 943-956.

Electronic Industries Association, (1983), “System Safety Analysis Techniques,’’ Safety En-
gineering Bulletin No. 3-A, Engineering Department, Washington, D. C.

Electronic Industries Association, (1990) “System Safety Engineering in Software Develop-
ment,” Safety Engineering Bulletin No. 6-A, Engineering Department, Washington, D. C.

Fenelon, P. and J. A. McDermid (1993)) “An Integrated Toolset for Software Safety Assess-
ment,” Journal of Systems and Software, July.

FEAT (Failure Environment Analysis Tool), NASA Cosmic #MSC-21873.

FIRM (Failure Identification and Risk Management Tool), Lockheed Engineering and Sci-
ences Co., Cosmic.

Fragola, J. R. and J. F. Spahn (1973), “The Software Error Effects Analyis; A Qualitative
Design Tool,” in Record, 1973 IEEE Symposium on Computer Software Reliability, IEEE
73CH0741-9C) pp. 90-93.

Hall, F. M., R. A. Paul and W. E. Snow (1983)) “Hardware/Software FMECA”, Proceedings
of the Annual Reliability and Maintainability Symposium, pp. 320- 327.

Herrman, D. S., (1995), “A methodology for evaluating, comparing, and selecting software
safety and reliability standards,” Proceedings of the Tenth Annual Confermce on Computer
Assurance, pp. 223-232.

IEEE Sfandard Glossary of Softumre Engineering Terminology (1990), IEEE Std 610.12-1990.
New J’0r.k: IEEE.

11

[30] Procedures for Performin,g a Failure Mode, Eflects and Criticality Analysis (1980), MIL-STD-
1629A.

[31] Pugh, D. R. and E. Snooke, (1996), “Dynamic Analysis of Qualita.tive Circuits for Failure
Mode and Effects Analysis,” IEEE Proceedings of the Annual Relia,bility and Maintainability
Synzposium, pp. 37-42.

[32] Raheja, J. (1991) Assurance Technologies: Principles and Practices, McGraw-Hill.

[33] Ratan, V., K. Partridge, J. Reese and N. Leveson, (1996)) “Safety analysis tools for require-
ments specifications,” Proceedings of the Eleventh Annual Conference on Computer Assur-
ance, pp. 149-160.

[34] Reifer, D. J. (1979)) “Software Failure Modes and Effects Analysis,”IEEE Transactions on
Reliability, R-28, 3, 247-249.

[35] Roland, H. E. and B. Moriarty, (1990), System Safety Engineering and Management. New
York, New York: John Wiley and Sons.

‘[36] RTCA/DO-l78B (1992)) Software Considerations in Airborne Systems and Equipment Cer-
tification, RTCA, Inc.

[37] Rushby, J. (1993) Formal Methods and Digital Systems Validation for Airborne Systems,
SRI-CSL-93-07.

[38] SAE (1996), Aerospace Recommended Practice: Certification Considerations for Highly-
Integrated or Complex Aircraft Systems, ARP4754.

[39] SAE (1996), Aerospace Recommended Practice: Guidelines and Methods for Conducting the
Safety Assessment Process on Civil Airborne Systems and Equipment, ARP4761.

[40] SCOPE Project (1993), ESPRIT2, http://www.cordis.lu/esprit/ src/index.htm

[41] Selby, R. W. and V. R. Basili (1991), “Analyzing Error-Prone System Structure,” IEEE
Transactions on Software Engineering, 17, 2, 141-152.

[42] Stephenson, J., (1991), System Safety 2000: A practical guide for planning, managing and
conducting system safety programs. New York, New York: Van Nostrand Reinhold.

[43] “Streamlining Software Aspects of Certification,” http://shemesh.larc.nasa.gov/ssac/

[44] System Safety Society (1993), System Safety Analysis Handbook.

[45] Talbert, N. (1998), “The Cost of COTS: An Interview with John McDermid,” Computer, 31,
6, June, 46-52.

[46] Voas, J . (1998), “A Recipe for Certifying High Assurance Software,” RST Corp.,
http://www.rstcorp.com/paper-chrono.htm1. -

[47] Wallace, D. R., L. M. Ippolito and D. R.. Kuhn, (1992), “High Integrity Software Standards
and Guidelines,” Gaithersburg, MD: U.S. Department of Commerce, National Institute of
Standards and Technology, NIST Special Publication 500-204, September.

13

http://www.cordis.lu/esprit
http://shemesh.larc.nasa.gov/ssac
http://www.rstcorp.com/paper-chrono.htm1

